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Datums
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(NAVD 88).
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Using Regional Watershed Data to Assess Water-Quality
Impairment in the Pacific Drainages of the United States

By Daniel R. Wise

Abstract

Two datasets containing the first complete estimates of
reach-scale nutrient, water use, dissolved oxygen, and pH
conditions for the Pacific drainages of the United States were
created to help inform water-quality management decisions in
that region. The datasets were developed using easily obtain-
able watershed data, most of which have not been available
until recently, and the techniques that were used provide a
framework for integrating watershed data to assess water-
quality impairment across other large hydrologic regions in the
United States. These datasets were used to summarize regional
nutrient and water-use conditions within impaired water bod-
ies and to summarize regional dissolved oxygen concentra-
tions and pH conditions for free-flowing stream reaches. Two
examples are also presented that show how the datasets can be
applied to specific water-quality management issues: (1) nutri-
ent conditions in water bodies that have recently experienced
problems with harmful algal blooms; and (2) dissolved oxygen
and pH conditions in stream reaches likely to be populated by
steelhead trout (Oncorhynchus mykiss irideus) during their
summer run. The nutrient and water-use estimates could help
inform actions aimed at managing water-quality conditions
in impaired water bodies while the dissolved oxygen and pH
predictions could be useful as screening tools to identify water
bodies experiencing potential impairment.

Introduction

Government agencies responsible for managing water-
sheds for a variety of uses and benefits rely on many types
of information to guide their assessments, management, and
decision making. It’s important that these agencies have
access to readily available water-quality and watershed data
that represent the time period in which they are interested, but
until recently such data were often incomplete, outdated, or
non-existent. With the advent of large-scale spatial datasets
describing atmospheric, hydrologic, and terrestrial character-
istics, detailed spatial and temporal analyses at the watershed
level can now be performed to help inform management
decisions. The U.S. Environmental Protection Agency’s (EPA)

Watershed Assessment, Tracking & Environmental Results
System (WATERS; EPA, 2020a) and Nitrogen and Phosphorus
Pollution Data Access Tool (NPDAT; EPA, 2020b), which
bring together watershed data that were previously available
only from several independent and unconnected databases,
are examples of how national watershed data can be compiled
and made available through on-line databases. While both

the WATERS and NPDAT applications can help inform local
water-quality assessments, they are limited to nationally avail-
able datasets. This report describes how regional watershed
data were used to assess water-quality impairment related

to nutrient enrichment in the Pacific drainages of the United
States, which are the watersheds that ultimately drain to the
Pacific Ocean.

Nutrient over-enrichment is a serious threat to inland
waters throughout most of the United States (U.S. Geological
Survey, 1999) and is also a problem within the Pacific drain-
ages (California Water Resources Control Board, 2017,

Idaho Department of Environmental Quality, 2017; Montana
Department of Environmental Quality, 2017; Oregon
Department of Environmental Quality 2017; Washington
Department of Environmental Conservation, 2017; Wyoming
Department of Environmental Quality, 2017). Many of the
streams, ponds, lakes, and reservoirs within the Pacific drain-
ages included on recent state 303(d) lists of impaired water
bodies were placed there because they were not supporting
their designated beneficial uses (for example, drinking water,
recreation, aquatic life, and irrigation) due to excessive nutri-
ent levels, nuisance algal or rooted plant growth, low dis-
solved oxygen concentrations, or elevated pH. These types
of impairment are often associated with increases in primary
productivity related to nutrient enrichment caused by humans
(known as “cultural eutrophication,” but referred in this report
as simply “eutrophication”), but there are other factors such
as wastewater discharge, water use, water temperature, and
soil chemistry that can influence nutrient impairment when

it occurs.

The six states with jurisdiction over the Pacific drainages
(California, Idaho, Montana, Nevada, Oregon, Washington,
and Wyoming) use a variety of water-quality and watershed
data to assess water bodies with regards to eutrophica-
tion. Because of the substantial resources required to obtain
acceptable data with regards to quantity (both temporally and
spatially) and quality; however, it is not possible for these
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water-quality agencies to do site-specific assessments of all
water bodies. A general indication of the overall ecological
health of the water bodies within the Pacific drainages is pro-
vided by the EPA’s National Rivers and Streams Assessment
(NRSA). The NRSA, which all six states participate in, is a
collaborative probabilistic survey that provides a statistical
representation of the condition of rivers and streams across

a region and the key stressors that affect them. The states

use data collected through the NRSA in their evaluations of
individual water bodies as part of their assessment process
but do not use those data to perform state-wide assessments
of eutrophication. The states also identify the important
sources of nutrients causing impairment as part of their Total
Maximum Daily Load (TMDL) development process. While
the contributions from point sources (for example, wastewater
treatment plants and other permitted dischargers) are typically
easy to estimate because of the legal requirements for facili-
ties to perform routine monitoring and submit those results to
state regulatory agencies, the contributions from diffuse (often
called “non-point”) sources such as agriculture, urban runoff,
and natural sources are often difficult to quantify or are not
readily available. One tool that allows water-quality manag-
ers to account for both point and non-point nutrient sources is
the Spatially Referenced Regression On Watershed Attributes
(SPARROW) model, which was developed by the U.S.
Geological Survey (USGS) (Schwarz and others, 2006).

Purpose and Scope

This report describes how SPARROW predictions and
other available watershed data were used to develop two new
datasets that can help state regulatory agencies assess water-
quality impairment within the Pacific drainages. These two
datasets are available in an accompanying USGS data release
(Wise, 2021). The first dataset consists of reach-scale esti-
mates of nutrient conditions (loads, yields, concentrations,
and the contribution from different sources) and water use,
which water-quality managers can use to identify the contri-
bution from different sources to the nutrient loads delivered
to individual water bodies and evaluate their susceptibility
to water stress. The second dataset consists of reach-scale
predictions for two indicators of water-quality impairment
often associated with eutrophication: (1) mean warm-weather
minimum daily dissolved oxygen concentration and (2) mean

warm-weather maximum daily pH. These predictions were
based on multiple linear regression models that related mea-
sured values for those indicators to mean annual SPARROW
predictions and other watershed data. This approach is sub-
stantially different than conventional approaches to modeling
dissolved oxygen and pH conditions such as the CE-QUAL-
W2 model (Cole and Wells, 2006) and QUAL2K model
(Chapra and others, 2012), which use detailed measurements
or estimates of climatic and in-stream conditions to simulate
diel water-quality conditions. It is not feasible, however, to
use those rigorous approaches to evaluate thousands of stream
reaches across an entire watershed or across a state the way
the predictions described in this report can be used. The data-
set representing dissolved oxygen and pH conditions resulted
from a novel type of analysis that was only possible because
of the recent availability of SPARROW predictions and other
watershed data.

Description of the Study Area

The Pacific drainages cover a total area of 1,060,580
square kilometers and include the Columbia River basin, the
watersheds draining to Puget Sound, the coastal drainages of
Washington, Oregon, and California, the Klamath River basin,
the Sacramento River basin, the San Joaquin River basin, and
the watersheds surrounding San Francisco Bay (fig. 1). In
2011, scrub and grassland covered 39 percent of the modeling
domain, forest covered 34 percent, agricultural areas cov-
ered 10 percent, urbanized areas covered 4.3 percent, and the
remaining areas consisted of various minor land cover types
(Homer and others, 2015). The climate varies widely across
the modeling domain, with a humid continental climate in
western Washington and Oregon, a semi-arid steppe climate
in eastern Oregon and Washington and most of Idaho, a
Mediterranean climate along most of the California coast and
in the Central Valley, a desert climate in southern California,
and an alpine climate in the Sierra Nevada in California, the
Cascade Range in northern California, Washington, Oregon,
and the Rocky Mountains in Idaho, Montana, and Wyoming.
A detailed description of the Pacific drainages, including the
extensive manipulation of the natural hydrology that occurs
throughout the region, is included in Wise (2019a).
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Methods

The two datasets described in this report were referenced
to version 2 of the NHDPlus stream network (referred to as
“the NHDPlus2” in this report; Horizon Systems, 2013). The
NHDPlus2 is a comprehensive set of digital spatial data that
represents streams, ponds, lakes, and reservoirs that largely
correspond to the features on 1:100,000 scale USGS topo-
graphic maps. Stream reaches in the NHDPlus2 are repre-
sented by line segments that start at any point of channel
initiation (headwater reaches) or a tributary junction and end
at the next downstream tributary junction. The NHDPIlus2 also
includes the incremental catchment for almost all reaches,
which is the area that drains directly to a that reach without
passing through another reach. The Pacific drainages contain
324,454 NHDPIlus2 incremental catchments.

Analysis

Nutrient and Water-Use Conditions

Nutrient and water-use conditions were estimated for all
NHDPlus2 stream reaches. A subset of that larger dataset was
selected to represent water bodies in the Pacific drainages that
were not supporting their designated beneficial uses because
of impairment related to eutrophication (based on the state
303[d] lists for 2012), which was consistent with the time
frame represented by the watershed data used in this analysis.
Nutrient conditions, as estimated by the USGS SPARROW
models developed for the Pacific drainages for 2012 (Wise,
2019a), consisted of the mean annual total nitrogen and total
phosphorus loads, yields, and flow-weighted concentrations
and the contributions from individual anthropogenic and
natural sources to the mean annual loads. Water-use conditions
were represented by two indicators. One was a general water
use index for each reach that equaled the current streamflow
divided by the streamflow that would occur without any
hydrologic manipulation, such as upstream water diversions
and the return of water to streams through municipal wastewa-
ter discharge and runoff from irrigated land. The second indi-
cator was a groundwater-use index for each reach that equaled
the total upstream withdrawal of groundwater divided by the
current streamflow in the reach. These estimates were used
to provide both a regional summary of nutrient and water-
use conditions for impaired water bodies and to show the
conditions in four individual impaired water bodies that have
recently experienced problems with harmful algal blooms,
which are a growing concern across the Pacific drainages and
the United States.

Linear Regression Models

Linear regression models were developed to relate mean
warm-weather minimum daily dissolved oxygen concentra-
tions and mean warm-weather maximum daily pH in 40 and
45 free-flowing stream reaches, respectively, to watershed
attributes that were expected to have some influence on those
parameters. The explanatory attributes retained in the models
represented statistically significant variables (p-value less than
0.05) that provided the best model fit based on the adjusted
coefficient of determination (adjusted R?). Table 1 describes
the stream and landscape attributes that were evaluated as
explanatory variables in the dissolved oxygen and pH linear
regression models. These explanatory variables represented
one of the four general types of expected control on primary
productivity: water chemistry, light availability, water temper-
ature, and hydrology. The linear regression models were used
to predict mean warm-weather minimum daily dissolved oxy-
gen concentrations and mean warm-weather maximum daily
pH for free-flowing NHDPIlus2 stream reaches in the Pacific
drainages. No predictions were made, however, for reaches
where the value for at least one of the explanatory variables
was either missing or outside the range of values used in the
model calibrations. This meant that dissolved oxygen and pH
predictions were made for about 83 percent of the 313,032
NHDPlus2 reaches representing free-flowing streams. An
example application of those predictions is also presented that
shows how they can be used to assess potential impairment
in stream reaches likely to be populated by steelhead trout
(Oncorhynchus mykiss irideus) during their summer run in the
Pacific drainages.

Data Sources

The five types of data used to develop the datasets
described in this report were:

(1) recent SPARROW model predictions of streamflow,
total nitrogen, total phosphorus, and sediment for the
Pacific drainages;

(2) minimum daily dissolved oxygen concentrations and
maximum daily pH measured at USGS continuous moni-
toring stations;

(3) results from the U.S. Forest Service NorWest stream
temperature modeling project;

(4) values for selected landscape parameters; and

(5) data describing the spatial extent of steelhead trout
summer runs.
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SPAtially Referenced Regression On Watershed
Attributes (SPARROW) Model Predictions

The USGS developed SPARROW models for the Pacific
drainages for streamflow and three water-quality constituents—
total nitrogen, total phosphorus, and suspended sediment
that represented 2012 conditions (Wise, 2019a). The analysis
described in this report used either the original predictions
from those models or the predictions resulting from minor
modifications to the input data for those models. These modi-
fications were made to either correct some of the input data
used in original models or to represent conditions that were
not within the scope of the original modeling. All predictions
represent mean annual conditions for water years 200014
that were detrended to water year 2012, which was necessary
to account for differences in record length, hydrologic condi-
tions, and sample size among the calibration stations used in
the models. This means that the predictions reflect landscape
conditions for water year 2012 but mean annual hydrologic
conditions for water years 2000 through 2014. Saad and others
(2019) and Wise (2019a) contain a detailed description of how
SPARROW models were developed for the Pacific drainages,
including the limitations, uncertainties, and potential biases
associated with the model SPARROW model input data and
model predictions.

Two corrections were made to the input data used in the
original SPARROW nutrient models to obtain more accurate
estimates of reach-scale nutrient conditions. The predictions
from the original nutrient models included the contribu-
tion from all land classified as “developed” under the 2011
National Land Cover Database (Homer and others, 2015),
and this meant that the in-stream nutrient loads predicted
by those models included the contribution from paved and
unpaved roads. While this contribution was relatively small
in urban areas, it was often incorrectly predicted to be the
largest nutrient source in many undeveloped areas within
the Pacific drainages (Wise, 2019a). To correct this problem,
the input data were modified so that the contribution from
developed land was limited to those areas located within
delineated towns and cities. The predictions from the original
total phosphorus model also included the contribution from
cattle grazing manure applied to land that was determined to
be suitable for grazing, which included areas located within
national forests. While grazing manure phosphorus from these
forested areas made up only 11 percent of the total contrib-
uted by grazing cattle, it was often predicted to be the largest
phosphorus source in many areas within the Pacific drainages.
Based on discussions with water-quality managers, however,
these results do not reflect actual conditions. To correct this
problem, the input data for the total phosphorus model were
modified so that the contribution form grazing manure was
limited to those areas that did not represent forest land.

Because of the way the mean annual flow-weighted
nutrient concentrations predicted by the SPARROW models
were calculated, there were a very small number of reaches
with extremely high values for this parameter. The mean

annual flow-weighted concentration for a reach was equal

to the SPARROW-estimated mean annual load divided by
the SPARROW-estimated mean annual streamflow, and the
estimated mean annual streamflow was close to zero in some
reaches. This led to unrealistically high estimates of mean
annual flow-weighted concentration (sometimes greater than
1,000 mg/1). To overcome this problem, the estimated mean
annual flow-weighted concentrations for total nitrogen and
total phosphorus were capped at more realistic (but still very
high) values. These values were 70 and 12 mg/l, respectively,
which represent the highest concentrations of total nitro-

gen and total phosphorus typically measured in raw sewage
(Tchobanoglous and others, 2003).

The predictions from the original streamflow model
accounted for consumptive water use for public water supply
and agriculture as well as the return of that water to streams
through municipal wastewater discharge and runoff from
irrigated land, respectively. These diversions include 642
municipal water supply intakes and 248 irrigation withdraw-
als. The model also accounted for 72 water transfers that occur
either within river basins or between river basins. The origi-
nal streamflow model was used to run a scenario that did not
include any of these types of water manipulations to provide
an estimate of natural streamflow conditions. These predic-
tions were then used to calculate the general water-use index
described earlier that was equal to the current streamflow
expressed as a percentage of the natural streamflow.

Because of the spatially explicit nature of the watershed
data that were used as input to the 2012 SPARROW models,
the contribution to the estimated load in a reach from sources
that were not directly accounted for in the models can still
be estimated for that reach. The contribution from indirectly
modeled sources was estimated for two total phosphorus
sources (fertilizer applied to farmland and wastewater dis-
charge) and four total nitrogen sources (fertilizer applied to
farmland, wastewater discharge, atmospheric deposition, and
runoff from developed land) that were directly accounted for
in the models.

(1) The contribution to total nitrogen and total phosphorus
load from all fertilizer applied to farmland was disaggre-
gated into the contributions from commercial fertilizer
and livestock manure, which were the two forms of
fertilizer that made up that source (Wise, 2019b). The
contribution from livestock manure used as fertilizer was
further disaggregated into its two individual components,
which were manure from cattle housed in concentrated
animal feeding operations (such as dairies and feedlots)
and manure from non-cattle livestock such as poultry,
horses, and sheep.

(2) The contribution to total nitrogen and total phospho-
rus load from wastewater discharge was disaggregated
into the contribution from aquaculture facilities such as
hatcheries and fish farms and the contribution from other
types of discharge, which was primarily from sewage
treatment plants (Skinner and Wise, 2019).



(3) The contribution to total nitrogen load associated with
atmospheric nitrogen deposition was disaggregated
into the separate contributions from oxidized nitrogen
(from combustion sources) and reduced nitrogen (from
agricultural sources—primarily livestock) (Wieczorek and
others, 2019).

(4) The contribution to total nitrogen load associated with
runoff from developed land primarily represented two
sources—fertilizer use and leaching from onsite waste-
water treatment (mostly septic tanks), but this source
could not be disaggregated into its separate components
in the total nitrogen model because of the way it was
parameterized. A general indication of the contribution
from onsite wastewater treatment to the in-stream total
nitrogen loads was estimated, however, by expressing
the upstream population served by onsite wastewater
treatment (Wise, 2019c¢) as a percentage of the total
upstream population.

Continuous Monitoring Data

The results from continuous water-quality monitoring
provided the data for the dependent variables in the dissolved
oxygen and pH regression models. The USGS has a well-
established network of water-quality stations in the Pacific
drainages where high-quality continuous data have been
collected over many years and have undergone a thorough
quality-control review of the methods and procedures used to
collect and process the data. There is also a limited amount of
state and local agency continuous water-quality data available
for the Pacific drainages. Based on a review of the non-USGS
data and discussions with the state water-quality database
managers, however, it was determined that using just USGS
data, collected with consistent quality-control and review
processes, minimized potential sources of bias in datasets and
afford the most consistent quantitative results across all Pacific
drainages. Therefore, only the USGS results were used in the
development of the dissolved oxygen and pH linear regression
models to ensure that those models were based on the highest
quality data available.

Model Calibration Data

The USGS National Water Information System (U.S.
Geological Survey, 2019a, https://dx.doi.org/10.5066/
F7P55KJIN) was queried to obtain the daily minimum dis-
solved oxygen concentrations and daily maximum pH values
measured at USGS continuous monitoring stations between
water years 2000 and 2014. To account for nonstationarity in
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the data, the original daily values were detrended by center-
ing them on the midpoint of each station record. The mean
warm period (July 1-August 31) values for the detrended daily
values for each station were calculated, and each station was
referenced to an NHDPIus2 reach. Dissolved oxygen and pH
data were retained for calibration of the linear models if they
represented the warm weather seasons for at least 4 different
years. Only the most downstream station was retained when
two or more stations were located within the same HUC12
watershed and on the same primary flow path. This approach
was used to minimize potential calibration bias from station
clustering. Additionally, stations that were not located on
free-flowing streams (that is, they were located within a pond,
lake, or reservoir), stations with data that were not representa-
tive of the stream cross section (for example, studies targeting
suspected low dissolved oxygen locations), and stations that
were heavily influenced by upstream conditions that could
not be accounted for in the regression explanatory data (for
example, high dissolved oxygen concentrations downstream of
a dam or low dissolved oxygen concentrations downstream of
a severely eutrophic water body) were not retained.

The final dataset of mean warm period daily minimum
dissolved oxygen concentrations included 40 stations (mini-
mum: 2.10 mg/l, maximum: 11.74 mg/l, mean: 7.18 mg/I,
number of values for a single station ranging from 130 to
917) (fig. 2), and the final dataset of mean warm period daily
maximum pH included 45 stations (minimum: 6.85, maxi-
mum: 9.08, mean: 7.90, number of values for a single station
ranging from 150 to 917) (fig. 3). Although the total number of
stations used in the linear regression models was small given
the large area being modeled, the stations did provide good
spatial representation of the region—and the land cover for the
areas draining to those stations was generally representative
of the land cover for all the Pacific drainages (fig. 4). Most of
the stations, however, were located within or close to areas
dominated by urban development or agriculture, and only a
few stations were in areas consisting mostly of forest, scrub,
shrub, or grass land (figs. 2, 3). This pattern was not surprising
because water-quality studies tend to focus on impaired water
bodies, but it might have introduced some bias into the regres-
sions that were used to develop the dissolved oxygen and pH
models.


https://dx.doi.org/10.5066/F7P55KJN
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Figure 2. Station locations and calibration data used in the dissolved oxygen linear regression model for Pacific drainages.
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Figure 4. Comparison of upstream land cover for the stations supplying the calibration data used in the dissolved oxygen and pH linear

regression models to land cover for all Pacific drainages.

Model Validation Data

The limited amount of data that were used to validate the
dissolved oxygen and pH liner models came exclusively from
the USGS (U.S. Geological Survey, 2019a, https://dx.doi.org/
10.5066/F7P55KJN). Some of the USGS stations had warm
weather daily minimum dissolved oxygen concentration and
daily maximum pH data that met all criteria for inclusion in
the model calibrations except that the data represented fewer
than 4 different years. These data provided a way to validate
the dissolved oxygen regression model at 15 stations and the
pH regression model at 28 stations. The available state data,
however, were not adequate to validate the models. While
there were stations where states collected continuous water-
quality data, data from those stations were sometimes not
accessible or were of unknown quality, the period of record
was too short or contained substantial gaps, or the data repre-
sented impoundments or estuaries where the model predictions
do not apply. Figures 2 and 3 show the locations of the USGS
stations where model validation was performed.

Stream Temperature Data

The Northwest Stream Temperature (NorWeST) database
is a repository for stream temperature data in the western U.S.
It hosts more than 220,000,000 temperature recordings from
more than 22,700 locations (U.S. Forest Service, 2019). Isaac
and others (2017) fit a spatial-stream-network (SSN) model
to a subset of the values in the NorWest database to estimate
mean August water temperatures (2000—11) for each reach in
the NHDPlus2 network located within the NorWest project
boundary (which includes all the Pacific drainages). The Nor-
West database also includes estimates of stream canopy cover
for each reach in the NHDPlus2 network. While mean August
water temperature estimates existed for each of the reaches

containing a model calibration station, there were 181 NHDP-
lus2 reaches that did not have a value. For those cases a value
was estimated using a simple linear regression that related all
available mean August water temperature values to the mean
maximum annual air temperature (1971-2000) corresponding
to their incremental NHDPIlus2 catchment (Wieczorek and
others, 2019).

Landscape Data

The landscape data evaluated in this study included two
attributes that were averaged for each incremental NHDP-
lus2 catchment-mean summertime total solar radiation for
1998-2009 (National Renewable Energy Laboratory, 2019)
and base-flow index (Wieczorek and others, 2019) and three
attributes that were generalized for the total area draining to
each NHDPlus2 reach—the mean soil salinity and the total
withdrawal of groundwater in 2012 (Wieczorek and oth-
ers, 2019), and the total number of active mining operations
(U.S. Geological Survey, 2019b) and formerly active mining
operations (Center for International Earth Science Information
Network, 2019) where there was a potential for downstream
acid mine drainage pollution (specifically, elevated pH levels).
The formerly active operations only included those designated
as “Superfund” sites under the Comprehensive Environmental
Response, Compensation, and Liability Act (CERCLA) of
1980. A groundwater use index was also calculated for each
reach that equaled the total upstream withdrawal of groundwa-
ter (Wieczorek and others, 2019) divided by the 2012 stream-
flow predicted by the SPARROW model for the reach.


https://dx.doi.org/10.5066/F7P55KJN
https://dx.doi.org/10.5066/F7P55KJN

Impaired Water Bodies

A regional geo-spatial dataset of impaired water bodies
for 2012 was created from the data available from each of the
states with jurisdiction over the Pacific drainages or, in the
case of Montana, from the EPA (California Water Resources
Control Board, 2017; Idaho Department of Environmental
Quality, 2017; 2017; Oregon Department of Environmental
Quality, 2017; Washington Department of Environmental
Conservation, 2017; Wyoming Department of Environmental
Quality, 2017; U.S. Environmental Protection Agency,

2019). These datasets were downloaded and filtered to select
water bodies impaired by impacts related to eutrophica-

tion and belonging to TMDL Categories 4 (water body is
impaired or threatened, but a TMDL has been implemented
or is not needed) or 5 (water body is impaired and a TMDL

is required). The approaches for defining a water body vary
between states and even within states, meaning an impaired
water body can be an individual impoundment, an individual
stream reach, a small group of stream reaches, or even all
stream reaches within a watershed (for example, a HUC8
watershed). Because each water body needed to be referenced
to a unique NHDPlus2 reach for this analysis, the most down-
stream NHDPIlus2 reach corresponding to each listed water
body was selected to represent that water body. The small
number of water bodies that were extensive enough to cover
more than one HUCS8 watershed were divided into separate
water bodies. Listed water bodies that were not represented in
the NHDPlus2 (typically smaller streams, isolated ponds, and
agricultural returns) were not included in the regional dataset
of impaired water bodies. The resulting geospatial dataset
included 1,809 water bodies within the Pacific drainages that
were referenced to an NHDPlus2 reach.

Fish Run Data

Stream reaches likely to be populated by steelhead trout
during their summer run in the Pacific drainages were obtained
from the California Department of Fish and Wildlife (2020)
and the StreamNet database maintained by the Pacific States
Marine Fisheries Commission (2020). The original geo-spatial
data obtained from these organizations were referenced to the
NHDPIus2, and the combination of the two datasets included
43,403 reaches.

Results

Nutrient Conditions for Impaired Water Bodies

The results from this study were used to describe nutrient
and water-use conditions for the 1,809 water bodies within the
Pacific drainages identified by their states as nutrient-impaired.
Table 2 summarizes the SPARROW nutrient modeling for
those impaired water bodies, and figures 5 and 6 show the
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largest contributors to the total nitrogen and total phosphorus
load delivered to those water bodies. The directly modeled
sources in table 2 are nutrient sources that were represented in
the regression equations used in the SPARROW total nitrogen
and total phosphorus models and, therefore, were directly
accounted for in those models. But as explained earlier, the
contribution to the estimated load in a reach from sources

that were not directly accounted for in the models can still

be estimated—and these contributions are represented by the
indirectly modeled sources in table 2.

The SPARROW predictions showed that, on average,
diffuse landscape sources, rather than point-source wastewater
discharges, are the largest contributors to the total nitrogen
load delivered to impaired water bodies in the Pacific drain-
ages (table 2). While the largest mean contributions to total
nitrogen load are from atmospheric deposition (34.0 percent)
and fertilizer/manure applied to farmland (30.9 percent), there
are areas where other sources dominate (fig. 5). Red alder
trees are often the largest source in western Washington and
Oregon, developed land is generally the largest source in the
urbanized watersheds around Seattle and Portland, and springs
are the largest source for many reaches of the Snake River.

The SPARROW predictions showed that diffuse land-
scape sources are also the largest contributors to the total
phosphorus load delivered to impaired water bodies (table 2).
The largest mean contributions to total phosphorus load are
from natural phosphorus originating along stream channels
and from weathering of upslope geology (49.4 percent) and
agricultural sources (the combination of fertilizer/manure
applied to farmland, and grazing cattle manure; totaling 35.9
percent) (table 2). There are also clear spatial patterns in the
delivery of total phosphorus to impaired water bodies (fig. 6).
Grazing cattle manure is the largest contributor to most of
the water bodies in western Washington and Oregon, while
natural phosphorus is the largest contributor to most of the
water bodies in eastern Washington and Oregon. Fertilizer/
manure applied to farmland is generally the largest source in
areas of Washington and Oregon under cultivation, whereas
point-source wastewater discharge is the largest source for
many reaches of the Snake River. In California, natural
phosphorus and grazing cattle manure are generally the largest
contributors to impaired water bodies located outside of urban
areas and areas under cultivation. The largest source in urban
areas within California is generally point-source wastewater
discharge and the largest source in cultivated areas is generally
fertilizer/livestock manure applied to farmland.
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In addition to the contributions from directly modeled
nutrient sources shown in table 2, the contributions from indi-
rectly modeled sources could also be useful to water-quality
managers. For example, on average, most of the point-source
wastewater discharge comes from sewage treatment plants,
commercial fertilizer makes up most of the fertilizer/manure
applied to farmland, and of most of the manure applied to
farmland comes from non-cattle livestock. And for total nitro-
gen, table 2 provides information that can be used to estimate
the total impact from agricultural activities. Grazing cattle
manure was not a significant source in the total nitrogen model
for the Pacific drainages, suggesting that most nitrogen from
that source is lost to volatilization, denitrification, or mineral-
ization before being delivered to streams. Given that fertilizer/
manure applied to farmland contributes on average about 31
percent to total nitrogen load, that a substantial portion of the
nitrogen from grazing livestock manure is likely volatilized,
and that about 41 percent of the contribution from atmospheric
deposition consists of reduced nitrogen (primarily from the
volatilization of nitrogen in livestock manure), agricultural
activities are likely on average the largest contributor (either
directly or indirectly) to the total nitrogen load delivered to
many of the impaired water bodies.

Dissolved Oxygen and pH Regression Model
Results

Two watershed properties, mean August water tempera-
ture and mean annual flow-weighted total nitrogen concen-
tration, were significant predictors of mean warm-season
minimum daily dissolved oxygen concentration, and both
had a negative coefficient (table 3). These results indicate
that the combined effect of lower oxygen solubility and
increased plant productivity in response to warmer water with
a larger supply of nutrients leads to lower dissolved oxygen
concentrations. The SPARROW-estimated total phosphorus
concentration was also a significant predictor (with a nega-
tive coefficient), but only when total nitrogen concentration
was not included, and this reflected the strong correlation
between the two parameters. Total nitrogen concentration was
retained, however, because its coefficient was more significant
and provided a better model fit than the coefficient for total
phosphorus.

Four watershed properties were significant predictors of
mean warm-season maximum daily pH (table 4). Negative
coefficients were estimated for mean annual streamflow as a
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percentage of natural streamflow, mean annual total nitrogen
yield from nitrogen fertilizer/manure used as fertilizer, and
mean annual suspended-sediment concentration; and a posi-
tive coefficient was estimated for the mean soil salinity of the
contributing drainage area. These results indicate that reaches
with streamflow close to or greater than the amount expected
under natural conditions (the latter situation is possible for
reaches located downstream of irrigation returns and wastewa-
ter discharge) tend to be less susceptible to ecological imbal-
ance (for example, excessive plant growth) than reaches where
natural streamflow is reduced because of upstream diversions.
The negative coefficient for the yield from nitrogen fertilizer/
manure could be related to the high salt content in agricultural
runoff, which tends to buffer pH swings in streams. Suspended
sediment concentration was expected to have a negative coef-
ficient because higher concentrations are positively related to
turbidity, which attenuates primary productivity (leading to
lower maximum pH). In contrast, soil salinity was expected

to have a positive coefficient because streams draining areas
containing saline soils usually have naturally elevated pH due
to the high alkalinity of those soils.

Standard diagnostic techniques were used to evaluate the
dissolved oxygen and pH linear regression models (figs. 7, 8).
There was a strong relation between the measured values for
mean warm-season minimum dissolved oxygen concentra-
tion and the predicted values (fig. 7a; adjusted R? of 0.690)
and between the measured values for mean warm-season
maximum pH and the predicted values (fig. 8a; adjusted R? of
0. 701). The residuals for both the dissolved oxygen and the
pH models were normally distributed (figs. 7b, 7d, 8b, 8d).
Figures 7d and 8d include the normal distribution expected for
the residuals (blue line) and a kernel plot (red line), which is
a smooth curve that represents the actual distribution with-
out assuming normality. There was also no systematic pat-
tern observed in the relation between the residuals and the
predicted values for either model (fig. 7c, 8c), which would
indicate bias in the model predictions. Also, the errors associ-
ated with both model validations were greater than the errors
associated with the calibrations. The root mean squared error
(RMSE) for the dissolved oxygen model validation was 1.84
mg/l compared to 1.24 mg/1 for the calibration, and the RMSE
for the pH model validation was 0.43 pH units compared to
0.29 pH units for the calibration.
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A. Measured versus predicted values
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Figure 7. Dissolved oxygen linear regression model developed for the Pacific drainages.
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Figure 8. pH linear regression model developed for the Pacific drainages.
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Dissolved Oxygen and pH Conditions

The dissolved oxygen and pH linear regression mod-
els were used to predict the mean warm-weather minimum
daily dissolved oxygen concentration and maximum daily
pH for 2000—14 (and the corresponding 90 percent confi-
dence intervals) for all NHDPIlus2 reaches other than those
representing ponds, lakes, reservoirs, and shorelines. These
predictions are shown on figures 9 and 10 and summarized
in the legends for those figures. The dissolved oxygen model
predicted extremely low (less than 2 mg/l) and even negative
values for 6,172 of the 257,813 reaches, and these predicted
values were replaced with a value of 2 mg/l (with no corre-
sponding confidence interval), which represented a reasonable
lower limit for mean warm-weather minimum daily dissolved
oxygen concentration based on the measured values used in
the regression. Almost all the 6,172 reaches extremely low or
negative predictions were associated with very high stream
temperatures (for example, about half of these reaches had
a mean August stream temperature that was greater than the

95th percentile of 23.8 °C for all the reaches in the prediction
dataset). None of the 40 measured values used in the regres-
sion were below 2 mg/l, however, even though many of those
values were associated with reaches with mean August stream
temperatures that were above 23.8 °C. In contrast, no limits
were set on the upper end of the range in the predicted mean
warm-weather minimum daily dissolved oxygen concentra-
tions. While the dissolved oxygen model predicted values
greater than the greatest calibration value of 11.74 mg/1 for 61
reaches (with a maximum of 12.64 mg/1), these were almost
always predicted for high-elevation mountain streams with
minimum human impact where high dissolved oxygen concen-
trations are observed even during warm periods. Additionally,
no limits were set on the range in the predicted mean warm-
weather maximum daily pH (6.89-9.33) because the values
were within the expected range for this parameter (99.9 per-
cent of the values were also within the range of the measured
values used in the regression).
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Figure 10. Reach-scale values for mean warm-weather maximum daily pH predicted by the pH linear regression model developed

for the Pacific drainages.



Water-Quality Management
Applications

The two datasets described in this report were devel-
oped to help inform water-quality management decisions in
the Pacific drainages of the United States, and this might be
accomplished in two ways. First, water-quality managers
could use the reach-scale estimates of nutrient and water-use
conditions to assess water bodies with suspected or docu-
mented impairment. The data release accompanying this
study (Wise, 2021) contains those results for all the NHDP-
lus2 reaches but also includes a field indicating the reaches
that represent 1 of the 1,809 impaired water bodies shown in
figures 5 and 6 (along with the state-designated identifier for
each impaired water body). Second, water-quality managers
could use the reach-scale predictions of dissolved oxygen and
pH conditions to help identify impaired water bodies that have
not yet been assessed.

The nutrient and water-use conditions presented in table 2
are expressed as mean values to provide a regional summary
of nutrient and water-use conditions, but a unique profile can
be created for any water body that is referenced to an NHD-
Pus2 reach. The four water bodies identified on figure 1 (Clear
Lake in California, Fernan Lake in Idaho, Lake Billy Chinook
in Oregon, and Vancouver Lake in Washington) have three
things in common that make them instructive examples. They
were on their state’s 2012 303(d) list due to effects related to
eutrophication, they are in watersheds representing different
types of landscapes, and they have recently experienced prob-
lems with harmful algal blooms, which often form in warm,
impounded water bodies with abundant nutrients. Information
about nutrient and water-use conditions, therefore, could be
helpful to water-quality managers responsible for mitigating
the impacts within these four water bodies and other water
bodies experiencing similar types of impairment.

As was generally true across the Pacific drainages, dif-
fuse landscape sources rather than point-source wastewater
discharges are the largest contributors to the nutrient load
delivered to these four water bodies (table 5). The largest con-
tribution to total nitrogen delivered to Clear and Fernan Lakes
is from the combination of atmospheric deposition and runoff
from scrub and grass land (totaling 74.2 and 86.5 percent
for each lake, respectively). The largest contribution to total
phosphorus delivered to Clear Lake is from the combination of
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cattle grazing, manure, and natural sources (stream channels,
and upslope geology) (totaling 63.5 percent), and the largest
contribution to total phosphorus delivered to Fernan Lake is
from natural sources (77.9 percent). Spring discharge is the
largest contributor to both total nitrogen and total phosphorus
delivered to Lake Billy Chinook (89.3 and 48.3 percent for
each contaminant, respectively) and runoff from developed
land is the largest contributor to both total nitrogen and total
phosphorus delivered to Vancouver Lake (66.7 and 73.8
percent for each contaminant, respectively). What these results
suggest is that, if nutrient supply is an important control on the
severity of harmful algal blooms in these water bodies, miti-
gating those impacts through reductions in watershed nutrient
inputs might prove difficult.

The predictions of dissolved oxygen and pH conditions
described in this report might be useful by themselves or in
combination with other data like the results from the NRSA to
screen large numbers of water bodies for impairment. Water-
quality managers could identify individual stream reaches
where the predicted warm-weather values exceed applicable
dissolved oxygen or pH criteria or they could evaluate entire
watersheds based on the percentage of stream length that is
predicted to exceed those criteria. This might be useful infor-
mation, for example, when assessing the potential impairment
of stream reaches where sensitive fish species are likely to
be found—such as for steelhead trout during their summer run
in the Pacific drainages, which occurs between March and
November. Steelhead trout, a salmonid species found in fresh-
water tributaries flowing to the Pacific Ocean, are the anad-
romous form of the rainbow trout (meaning that they migrate
from the ocean into fresh water to spawn). Coldwater aquatic
life water-quality standards apply to reaches where these fish
are expected to inhabit, generally meaning a dissolved oxygen
standard of not less than 8.0 mg/l and a pH standard of not
greater than 8.5. Stream reaches where steelhead trout are
expected to be found during their summer run in the Pacific
drainages are shown on the inset maps in figures 9 and 10. For
those reaches where predictions were made, the linear regres-
sion models predicted that 59 percent of the stream length
had a mean warm-weather minimum daily dissolved oxygen
concentration less than 8.0 mg/l and 11 percent of the stream
length had a mean warm-weather maximum daily pH greater
than 8.5.
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Discussion

The approaches described in the report can also be used
to create similar datasets for other regions of the United States.
SPARROW streamflow, nutrient, and suspended-sediment
models representing 2012 conditions are currently available
for the four other major hydrologic regions within the con-
terminous U.S.: the Southwest (Wise and others, 2019), the
Midwest (Robertson and Saad, 2019), the Southeast (Hoos
and Roland, 2019), and the Northeast (Ator, 2019). The input
data and predictions from those regional SPARROW models
provide the same type of detailed, reach-scale nutrient and
water-use conditions that were estimated for the Pacific region.
The dissolved oxygen and pH regression models developed
for the Pacific drainages can likely be reproduced in the
other hydrologic regions as well. Between 2000 and 2014 the
USGS continuously monitored 873 stream locations across the
conterminous U.S. where dissolved oxygen was measured and
745 stream locations where pH was measured. Only 40 values
for mean warm-weather minimum daily dissolved oxygen
concentration and 45 values for mean warm-weather maxi-
mum daily pH were needed to show a strong relation between
those parameters and watershed attributes in the Pacific
drainages. Therefore, there might be enough water-quality
data available to build similar models for the other regions to
estimate reach-scale dissolved oxygen and pH conditions and
identify the watershed attributes that control those conditions.

The datasets described in this report and similar datas-
ets that might be created for other hydrologic regions should
be used with an understanding that, as is true with all mod-
els, there is uncertainty associated with their predictions.
Therefore, water-quality managers using those predictions
to assess water bodies would benefit from recognizing this
uncertainty. The SPARROW estimates of reach-scale nutrient
and water-use conditions include the 90 percent confidence
intervals for the predicted mean annual total nitrogen and total
phosphorus loads (as shown in table 5), and this information
provides a useful quantitative measure of the model uncer-
tainty. The confidence intervals for the mean annual loads,
however, only represent the uncertainty associated with the
model calibrations. There is also some uncertainty that was
not estimated as part of the development of the Pacific region
SPARROW models because this uncertainty is difficult to
quantify systematically.

Some of the error in the model predictions could result
from applying the regional calibration results to small water-
sheds, such as the one draining to Fernan Lake (table 5).

The results from a mass balance on the nutrients delivered to
Fernan Lake between 2014 and 2015, which relied on high
intensity streamflow and water-quality monitoring (LaCroix,
2015), suggest that down-scaling the models might lead to
inaccurate predictions in some watersheds. The SPARROW-
estimated total phosphorus yield for the Fernan Lake water-
shed was about 23 percent of the measured mean annual yield.
The discrepancy between the predicted and measured total
phosphorous yields for this watershed might be related to the

way that the contribution from diffuse nutrient sources (which
dominate the Fernan Lake watershed) are estimated for SPAR-
ROW modeling. Diffuse nutrient sources, such as natural
phosphorus and agriculture, are estimated by interpolating
data representing large areas (for example, surficial geologic
units for natural phosphorus) to smaller areas. Therefore, it
would not be unexpected if the relative spatial error associated
with this approach was often greater for smaller watersheds
compared to larger watersheds. But while that pattern would
be expected for some watersheds, it would not necessarily be
expected for all. Watersheds where the nutrient loads come
primarily from point-source wastewater discharge, regardless
of size, should have less uncertainty in the model inputs than
similarly sized watersheds dominated by diffuse sources. The
reason the uncertainty is less is because estimates of wastewa-
ter nutrient discharge are facility-specific and, as a result, have
relatively low error.

Some of the error in the model predictions could also
result from hydrologic and anthropogenic features that are
unique to a watershed, such as the one draining to Vancouver
Lake (table 5). The results from a mass balance on the
nutrients delivered to Vancouver Lake between 2010 and
2012, which also relied on high intensity streamflow and
water-quality monitoring (Sheibley and others, 2014), suggest
that the presence of unusual hydrologic and anthropogenic
features might lead to inaccurate predictions in some water-
sheds. Vancouver Lake has three inlets, but only one acts as
a true surface water tributary to the lake. One of the inlets is
an artificial channel that connects the lake to the Columbia
River, and this channel only allows water to flow into the
lake from the river when the river stage is high enough. The
other inlet is a natural connection to the Columbia River that
currently has bidirectional flow that changes almost every day.
The SPARROW-estimated total phosphorus load delivered
to Vancouver Lake from its one true surface water tributary
(Burnt Bridge Creek) was about 74 percent of the measured
mean annual load for that tributary, but it was only about 55
percent of the total measured net mean annual load delivered
to Vancouver Lake (where net load was the total amount deliv-
ered to the lake minus the total amount that was discharged
from the lake to the Columbia River).

The dataset containing the predictions of mean warm-
weather minimum daily dissolved oxygen concentrations and
mean warm-weather maximum daily pH values for the Pacific
drainages also includes 90 percent confidence intervals for
those predictions, and this information should help inform
water-quality evaluations that use those predictions. Ideally,
the accuracy of the dissolved oxygen and pH linear regression
models would have been validated by comparing the predic-
tions against a rich dataset of measured values that were not
used in the model calibrations. But this validation was not pos-
sible because of the limited amount of continuous dissolved
oxygen and pH data available for the Pacific drainages. While
the number of stations where model validation was possible
(15 for dissolved oxygen and 28 for pH) was likely adequate,
the amount of data at any one water-quality station was



limited to 3 years of warm period measurements (and often
only included 1 or 2 years). It was possible, therefore, that the
mean, detrended dissolved oxygen and pH values measured at
the validation stations were not as representative of long-term
mean conditions as the measured values used in the regression
equations. Therefore, although the errors associated with both
model validations were greater than the errors associated with
the calibrations, these results do not necessarily show that the
dissolved oxygen and pH regression models were poor predic-
tors of actual conditions. Rather, the model validations might
have been compromised by the availability of the valida-

tion data.

Finally, while some general criteria were used to select
the prediction networks for the dissolved oxygen and pH
models, it was not possible to identify all the reaches where
the predictions were not applicable because the reaches were
heavily influenced by upstream conditions that could not
be accounted for in the regression explanatory data. These
included reaches located downstream of dam outlets with
elevated dissolved oxygen concentrations caused by air
entrainment in spillway releases, reaches located downstream
of highly productive water bodies with very low dissolved
oxygen concentrations and high pH, and reaches influenced by
wastewater discharges and sediments that have high oxy-
gen demands.

Conclusions

The two datasets described in this report contain the first
complete estimates of nutrient, water use, dissolved oxygen,
and pH conditions for the Pacific drainages of the United
States, and the techniques used to develop these datasets pro-
vide a framework for integrating watershed data across large
regions to assess water-quality impairment. The estimates
were possible because of the availability of input data and
predictions from recent SPARROW modeling, the results from
long-term USGS continuous monitoring, and the predictions
from recent stream temperature modeling. The development of
the dissolved oxygen and pH linear regression models showed
how these three very different types of regional watershed data
can be combined to build a set of tools that was not previously
available. The predictions from those models will probably
be most useful as a screening tool for identifying potential
impairment in the Pacific drainages. Water-quality managers,
for example, could select reaches in a watershed where the
predicted values were outside of the acceptable range for sen-
sitive fish species (in a similar way to what was done region-
ally in this paper for summer steelhead). They could then use
local knowledge about hydrology, water quality, and land use
to perform more detailed evaluations. When that type of infor-
mation is not available, they could use the estimated nutrient
and water-use conditions to inform their decisions on how to
monitor water-quality and manage upstream nutrient sources.
The example applications presented in this paper also showed
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how estimates of nutrient, water use, dissolved oxygen, and
pH conditions could be useful to water-quality managers by
filling in data gaps about impaired water bodies and adding to
the overall understanding of water-quality impairment.
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